Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev's Functions

نویسندگان

  • Yingzhou Li
  • Haizhao Yang
چکیده

This paper proposes an efficient method for computing selected generalized eigenpairs of a sparse Hermitian definite matrix pencil (A,B). Based on Zolotarev’s best rational function approximations of the signum function and conformal mapping techniques, we construct the best rational function approximation of a rectangular function supported on an arbitrary interval. This new best rational function approximation is applied to construct spectrum filters of (A,B). Combining fast direct solvers and the shift-invariant GMRES, a hybrid fast algorithm is proposed to apply spectral filters efficiently. Compared to the state-of-the-art algorithm FEAST, the proposed rational function approximation is proved to be optimal among a larger function class, and the numerical implementation of the proposed method is also faster. The efficiency and stability of the proposed method are demonstrated by numerical examples from computational chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the decay of the entries in inverses and Cauchy–Stieltjes functions of sparse, normal matrices

It is known that in many functions of banded, and more generally, sparse Hermitian positive definite matrices, the entries exhibit a rapid decay away from the sparsity pattern. This is in particular true for the inverse, and based on results for the inverse, bounds for Cauchy–Stieltjes functions of Hermitian positive definite matrices have recently been obtained. We add to the known results by ...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

Fast Computation of Spectral Densities for Generalized Eigenvalue Problems

The distribution of the eigenvalues of a Hermitian matrix (or of a Hermitian matrix pencil) reveals important features of the underlying problem, whether a Hamiltonian system in physics, or a social network in behavioral sciences. However, computing all the eigenvalues explicitly is prohibitively expensive for real-world applications. This paper presents two types of methods to efficiently esti...

متن کامل

Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications

We extend the multiplicative submodularity of the principal determinants of a nonnegative definite hermitian matrix to other spectral functions. We show that if f is the primitive of a function that is operator monotone on an interval containing the spectrum of a hermitian matrix A, then the function I 7→ trf(A[I]) is supermodular, meaning that trf(A[I])+trf(A[J ]) 6 trf(A[I∪ J ]) + trf(A[I ∩ J...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.08935  شماره 

صفحات  -

تاریخ انتشار 2017